Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest

Zhiyong Wu, Xuemei Wang, Fei Chen, Andrew A. Turnipseed, Alex B. Guenther, Dev Niyogi, Umarporn Charusombat, Beicheng Xia, J. William Munger, Kiran Alapaty

A R T I C L E I N F O

Article history:
Received 17 July 2010
Received in revised form 23 February 2011
Accepted 25 February 2011

Keywords:
Reactive nitrogen oxides
Ozone
Dry deposition velocity
WRF-Chem dry deposition module
Noah-GEM
1-D model

A B S T R A C T

Hourly measurements of O₃, NO, NO₂, PAN, HNO₃ and NOₓ concentrations, and eddy-covariance fluxes of O₃ and NOₓ over a temperate deciduous forest from June to November, 2000 were used to evaluate the dry deposition velocities (V_d) estimated by the WRF-Chem dry deposition module (WDDM), which adopted Wesely (1989) scheme for surface resistance (R_s), and the Noah land surface model coupled with a photosynthesis-based Gas-exchange Evapotranspiration Model (Noah-GEM). Noah-GEM produced better V_d(O₃) variations due to its more realistically simulated stomatal resistance (R_s) than WDDM. V_d(NOₓ) is very sensitive to the minimum canopy stomatal resistance (R_s) which is specified for each seasonal category assigned in WDDM. Treating Sep-Oct as autumn in WDDM for this deciduous forest site caused a large underprediction of V_d(O₃) due to the leafless assumption in ‘autumn’ seasonal category for which an infinite R_s was assigned. Reducing R_s to a value of 70 s m⁻¹, the same as the default value for the summer season category, the modeled and measured V_d(O₃) agreed reasonably well. HNO₃ was found to dominate the NOₓ flux during the measurement period; thus the modeled V_d(NOₓ) was mainly controlled by the aerodynamic and quasi-laminar sublayer resistances (R_a and R_b), both being sensitive to the surface roughness length (z₀). Using an appropriate value for z₀ (10% of canopy height), WDDM and Noah-GEM agreed well with the observed daytime V_d(NOₓ). The differences in V_d(HNO₃) between WDDM and Noah-GEM were small due to the small differences in the calculated R_a and R_b between the two models; however, the differences in R_a of NOₓ and PAN between the two models reached a factor of 1.1–1.5, which in turn caused a factor of 1.1–1.3 differences for V_d. Combining the measured concentrations and modeled V_d, NOₓ, PAN and HNO₃ accounted for 19%, 4%, and 70% of the measured NOₓ fluxes, respectively.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Global atmospheric emissions of nitrogen oxide have increased dramatically during the past 150 years, and the supply of reactive nitrogen to ecosystems has doubled due to anthropogenic activities such as nitrogen fertilization, biomass burning, and fossil fuel combustion (Galloway et al., 2008). Dry deposition is responsible for a significant portion of the total (wet and dry) nitrogen deposition (e.g. 34%, Munger et al., 1998; 58%, Sparks et al., 2008). Up to 43% of NOₓ–N emissions over North America have been estimated to be removed from the atmosphere by dry deposition (Shannon and Sisterson, 1992). Reactive nitrogen oxides, called NOₓ, is a class of oxidized nitrogen compounds including NO, NO₂, NO₃, HNO₃, PAN (peroxycetyl nitrate), other organic nitrates, and particle nitrate, which supply significant nutrient and acidic quantities to ecosystems. Augmented atmospheric deposition of NOₓ associated with increased emissions of NOₓ poses many environmental threats, including acidification of soil and surface water, eutrophication of lake, river and estuary, loss of biodiversity, damage to forests, and global climate change (Galloway et al., 2008). Increased anthropogenic emissions of NOₓ combined with hydrocarbons have produced high levels of surface O₃ concentration. O₃ can penetrate the tissues